Sains Malaysiana 53(7)(2024): 1477-1491

http://doi.org/10.17576/jsm-2024-5307-01

 

Evaluation of Catalase Activity, Gill Histology and Genotoxic Effects of Cadmium in Tilapia (Oreochromis niloticus) Fingerlings

(Penilaian Aktiviti Katalase, Histologi Insang dan Kesan Geno Toksik Kadmium pada Anak Ikan Tilapia (Oreochromis niloticus))

 

AMNA MARIUM1, HUMA NAZ1, TANVEER AHMED2,*, MUHAMMAD UMAR IJAZ3, MUHAMMAD USMAN4, ZAHID MANZOOR5, BASHARAT ALI6, AWATIF OMRAN7,YASMENE F. ALANAZI8, RASHA M.A. JAME8,9 & AYMAN EL SABAGH11

 

1Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan

2Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

3Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan

4Department of Anatomy and Histology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan

5Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur Pakistan

6Department of Agricultural Engineering, Khwaja University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

7Department of Biochemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia

8Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk,71491, Saudi Arabia

9Department of Chemistry, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia

10Department of Chemistry, Faculty of Education, Dalanj University, Dalanj, Sudan

11Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Egypt

 

Diserahkan: 24 Mac 2023/Diterima: 7 June 2024

 

Abstract

This research was designed to assess the toxicity of cadmium (Cd), and its effects on catalase (CAT) activity, histology of gills and geno-toxicity of Oreochromis niloticus. The acute toxicity of Cd (96-h) for fish was computed as 56.021 mg/L (LC50) and 80.7336 mg/L (LC100) using Probit method. The inferences showed that catalase level was significantly (P<0.05) lower in Cd treated O. niloticus as compared to control that was metal-stress free. It followed the order as: intestine<gills<muscles<brain. Results of gills histology showed that Cd-exposure caused prominent damage to both primary and secondary lamella. The histological alterations included fusion and curling of secondary lamella, hyperplasia in secondary lamella, epithelial lifting, and aneurysm observed in gills. Geno-toxic results showed that a significant (p<0.05) increase in micronuclei, de-shape and notched nuclei in erythrocytes of Cd-exposed O. niloticus was found as compared to control. The inferences of this study confirmed the genotoxic properties of Cd. This study will be helpful in understanding the histological and geno-toxic changes in fish body kept under Cd stress. This study will also help in the development of a specific approach to minimize the negative and genotoxic impacts of cadmium. Furthermore, tilapia can be used as a good bio-indicator for detecting toxic impacts associated with water pollution.

 

Keywords: Catalase; heavy metals; histology; tilapia; toxicity

 

Abstrak

Penyelidikan ini direka untuk menilai ketoksikan kadmium (Cd) dan kesannya terhadap aktiviti katalase (CAT), histologi insang dan geno toksik Oreochromis niloticus. Ketoksikan akut Cd (96-jam) untuk ikan dihitung sebagai 56.021 mg/L (LC50) dan 80.7336 mg/L (LC100) menggunakan kaedah Probit. Inferens menunjukkan bahawa tahap katalase secara signifikan (P<0.05) lebih rendah dalam Cd dirawat O. niloticus berbanding kawalan yang bebas tekanan logam. Ia mengikut tertib sebagai: usus<insang<otot<otak. Keputusan histologi insang menunjukkan bahawa pendedahan Cd menyebabkan kerosakan yang ketara kepada kedua-dua lamela primer dan sekunder. Perubahan histologi termasuk gabungan dan lencongan lamela sekunder, hiperplasia dalam lamela sekunder, pengangkatan epitelium dan aneurisme yang diperhatikan dalam insang. Keputusan geno toksik menunjukkan bahawa peningkatan ketara (p<0.05) dalam mikronukleus, nyah-bentuk dan nukleus bertakuk dalam eritrosit O. niloticusterdedah Cd didapati berbanding kawalan. Inferens kajian ini mengesahkan sifat ketoksikan geno Cd. Kajian ini akan membantu dalam memahami perubahan histologi dan geno toksik dalam badan ikan yang disimpan di bawah tekanan Cd. Kajian ini juga akan membantu dalam pembangunan pendekatan khusus untuk meminimumkan kesan negatif dan geno toksikkadmium. Tambahan pula, tilapia boleh digunakan sebagai penunjuk biologi yang baik untuk mengesan kesan toksik yang berkaitan dengan pencemaran air.

 

Kata kunci: Histologi; katalase; ketoksikan; logam berat; tilapia

 

RUJUKAN

Abbas, M., Chand, N., Khan, R.U., Ahmad, N., Pervez, U. & Naz, S. 2019. Public health risk of heavy metal residues in meat and edible organs of broiler in an intensive production system of a region in Pakistan. Environmental Science and Pollution Research 26(22): 23002-23009.

Abdelazim, A.M., Saadeldin, I.M., Swelum, A.A.A., Afifi, M.M. & Alkaladi, A. 2018. Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxidative Medicine and Cellular Longevity 2018: 6926712.

Adam, M.A., Maftuch, M., Kilawati, Y. & Risjani, Y. 2019. The effect of cadmium exposure on the cytoskeleton and morphology of the gill chloride cells in juvenile mosquito fish (Gambusia affinis). The Egyptian Journal of Aquatic Research 45(4): 337-343.

Adhikari, S., Ghosh, L. & Ayyappan, S. 2006. Combined effects of water pH and alkalinity on the accumulation of lead, cadmium and chromium to Labeo rohita(Hamilton). International Journal of Environmental Science & Technology 3(3): 289-296.

Ahmed, M.K., Parvin, E., Islam, M.M., Akter, M.S., Khan, S. & Al-Mamun, M.H. 2014. Lead-and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing perch Anabas testudineus (Bloch, 1792). Chemistry and Ecology 30(6): 532-540.

Ahmed, T., Abdullah, S., Abbas, K. & Zia, M.A. 2016. Catalase enzyme response to chronic Pb+ Cd metal mixture exposure, its purification and partial characterization from the kidney of freshwater fish, Oreochromis niloticus. Pakistan Journal of Zoology 48(6): 1733-1740.

Ahn, T.Y., Park, H.J., Kim, J.H. & Kang, J.C. 2020. Effects of antioxidant enzymes and bioaccumulation in eels (Anguilla japonica) by acute exposure of waterborne cadmium. Fisheries and Aquatic Sciences 23: 23.

Ali, T.H., Abed, A.A. & Ellah, A.A. 2018. Determination of the lethal concentration 50% (LC50) of cadmium chloride in mosquito fish Gambusia holbrookiTikrit Journal of Pure Science 21(1): 41-44.

Almeida, S., Rocha, T.L., Qualhato, G., Oliveira, L., Amaral, C., Conceição, E., Saboia-Morais, S. & Bailao, E. 2019. Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in Poecilia reticulata. Aquat. Toxicol. 216: e105293.

Almeida, J.A., Barreto, R.E., Novelli, E.L., Castro, F.J. & Moron, S.E. 2009. Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination. Neotropical Ichthyology 7: 103-108.

AlSabt, K. & Metcalfe, C.D. 1995. Fish micronuclei for assessing genotoxicity in water. Mutation Research 343: 121-135.

Al-Sawafi, A.G.A., Wang, L. & Yan, Y. 2017. Cadmium accumulation and its histological effect on brain and skeletal muscle of zebrafish. Journal of Heavy Metal Toxicity and Diseases 2(1): 1-6.

American Public Health Association (APHA). 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington: American Water Works Association and Water Environment Federation.

Arkhipchuk, V.V. & Garanko, N.N. 2005. Using the nucleolar biomarker and the micronucleus test on in vivo fish fin cells. Ecotoxicology and Environmental Safety 62(1): 42-52.

Arshad, R., Abdullah, S., Naz, H. & Abbas, K. 2018. Catalase activity as a bio-indicator of lead+nickel toxicity in carnivorous fish, Channa striata. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 55(2): 37-43.

Atli, G., Alptekin, O., Tukel, S. & Canli, M. 2006. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticusComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 143(2): 218-224.

Bakar, S.N.N.A., Ashriya, A., Shuib, A.S. & Razak, S.A. 2014. Genotoxic effect of zinc and cadmium following single and binary mixture exposures in tilapia (Oreochromis niloticus) using micronucleus test. Sains Malaysiana43(7): 1053-1059.

Banerjee, S. & Flores-Rozas, H. 2005. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2–MSH6 complex. Nucleic Acids Research 33(4): 1410-1419.

Barsiene, J., Dedonyte, V., Rybakovas, A., Andreikenaite, L. & Andersen, O.K. 2006. Investigation of micronuclei and other nuclear abnormalities in peripheral blood and kidney of marine fish treated with crude oil. Aquatic Toxicology 78(1): 99-104.

Barwick, M. & Maher, W. 2003. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research 56(4): 471-502.

Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. & Whittaker, J.W. 2001. Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9(8): 725-738.

Bolognesi, C. & Hayashi, M. 2011. Micronucleus assay in aquatic animals. Mutagenesis 26(1): 205-213.

Bose, M.T.J., Ilavazhahan, M., TamilselvI, R. & Viswanathan, M. 2013. Effect of heavy metals on the histopathology of gills and brain of fresh water fish Catla catla. Biomedical & Pharmacology Journal 6(1): 99-105.

Cao, L., Huang, W., Shan, X., Ye, Z. & Dou, S. 2012. Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles. Environmental Toxicology and Pharmacology 33(1): 16-25.

Capillo, G., Silvestro, S., Sanfilippo, M., Fiorino, E., Giangrosso, G., Ferrantelli, V. & Faggio, C. 2018. Assessment of electrolytes and metals profile of the Faro Lake (Capo Peloro Lagoon, Sicily, Italy) and its impact on Mytilus galloprovincialisChemistry & Biodiversity 15(5): 1800044.

Chance, M. & Mehaly, A.C. 1977. Assay of catalase and peroxidase. Methods in Enzymology 2: 764-817.

Dabas, A., Nagpure, N.S., Mishra, R.M., Kushwaha, B., Kumar, R. & Kumar, P. 2014. Investigation of cadmium-induced genotoxicity and oxidative stress response in Indian major carp, Labeo rohitaHuman and Ecological Risk Assessment: An International Journal 20(2): 510-526.

Da-Rocha, C.A., Da-Cunha, L.A., Da-Silva Pinheiro, R.H., de-Oliveira, B.M. & Burbano, R.M. 2011. Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury. Genetic and Molecular Biology 34: 694-697.

De-Jesus, I.S., Cestari, M.M., Bezerra, M.D.A. & Affonso, P.R.A.D.M. 2016. Genotoxicity effects in freshwater fish from a Brazilian impacted river. Bulletin of Environmental Contamination and Toxicology 96(4): 490-495.

Delahaut, V., Raskovic, B., Salvado, M.S., Bervoets, L., Blust, R. & De-Boeck, G. 2020. Toxicity and bioaccumulation of cadmium, copper and zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) juveniles. PLoS ONE 15(4): e0220485.

Drąg-Kozak, E.,  Kuchta-Gładysz, M., Grzesiakowska, A., Łuszczek-Trojnar, E. & Socha, M. 2022. Genotoxic effect of cadmium and zinc in the peripheral erythrocytes of prussian carp (Carassius Gibelio B.). Journal of Veterinary Research 66(4): 619-628.

Ergene, S., Cavas, T., Celik, A., Koleli, N., Kaya, F. & Karahan, A. 2007. Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Goksu Delta (Turkey): Genotoxic damage in relation to water pollution. Ecotoxicology 16(4): 385-391.

Evans, D.H., Piermarini, P.M. & Choe, K.P. 2005. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85(1): 97-177.

Fanta, E., Rios, F.S.A., Romao, S., Vianna, A.C.C. & Freiberger, S. 2003. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicology and Environmental Safety 54(2): 119-130.

Fatima, M., Usmani, N., Firdaus, F., Zafeer, M.F., Ahmad, S., Akhtar, K. & Hossain, M.M. 2015. In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India (Kali) river. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 176-177: 17-30.

Fatima, S., Muzammal, M., Rehman, A., Rustam, S.A., Shehzadi, Z., Mehmood, A. & Waqar, M. 2020. Water pollution of heavy metals and its effects on fishes. International Journal of Fisheries and Aquatic Studies 8(3): 6-14. 

Fazal, T., Rehman, M.S., Javed, F., Akhtar, M., Mushtaq, A., Hafeez, A., Din, A.A., Iqbal, J., Rashid, N. & Rehman, F. 2021. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere 281: 130758.

Fazal, T., Mushtaq, A., Rehman, F., Khan, A., Rashid, N., Farooq, W., Rehman, M.S. & Xu, J. 2018. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews 82: 3107-3126.

Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi, S. & Zeiger, E. 2003. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 534(1-2): 65-75.

Fernandes, C., Fontainhas‐Fernandes, A., Monteiro, S.M. & Salgado, M.A. 2007. Histopathological gill changes in wild leaping grey mullet (Liza saliens) from the Esmoriz-Paramos coastal lagoon, Portugal. Environmental Toxicology: An International Journal 22(4): 443-448.

Furnus, G.N.A., Caffetti, J.D., Garcia, E.M., Benitez, M.F., Pastori, M.C. & Fenocchio, A.S. 2014. Baseline micronuclei and nuclear abnormalities frequencies in native fishes from the Parana River (Argentina). Brazilian Journal of Biology 74(1): 217-221.

Goswami, P., Kaushik, U., Damor, S., Sharma, P. & Sharma, N. 2016. Effect of cadmium chloride on biochemical profile and enzyme activity in Tilapia mossibica. International Journal of Pharma Research and Health Sciences 4(6): 1462-1465.

Guner, U., Dilek, F. & Muranli, G. 2011. Micronucleus test, nuclear abnormalities and accumulation of Cu and Cd on Gambusia affinis (Baird & Girard, 1853). Turkish Journal of Fisheries and Aquatic Sciences 11: 615-622.

Hamilton, M.A., Rusoo, R.C. & Thurstan, R.V. 1977. Trimmed spearman-karber method for estimation for medical lethal concentration in toxocity bioassay. Environmental Science and Technology 11: 714-719.

Hovland, J.D.N., Cantor, R.M., Lee, G.S., Machado, A.F. & Collins, M.D. 2000. Identification of a murine locus conveying susceptibility to cadmium-induced forelimb malformations. Genomics 63(2): 193-201.

Javed, M. & Usmani, N. 2019. An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 89(2): 389-403.

Jimenez-Tenorio, N., Morales-Caselles, C., Kalman, J., Salamanca, M.J., De Canales, M.L.G., Sarasquete, C. & DelValls, T.Á. 2007. Determining sediment quality for regulatory proposes using fish chronic bioassays. Environment International 33(4): 474-480.

Jindal, R. & Verma, S. 2015. In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety 118: 1-10.

Jiraungkoorskul, W., Kosai, P., Sahaphong, S., Kirtputra, P., Chawlab, J. & Charucharoen, S. 2007. Evaluation of micronucleus test’s sensitivity in freshwater fish species. Research Journal of Environmental Sciences 1(2): 56-63.

Kumar, P., Prasad, Y., Patra, A.K., Ranjan, R., Swarup, D., Patra, R.C. & Pal, S. 2009. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Science of the Total Environment 407(18): 5024-5030.

Kumari, K., Khare, A. & Dange, S. 2014. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. BioMed. Research International 2014: 782493.

Liu, X.J., Luo, Z., Li, C.H., Xiong, B.X., Zhao, Y.H. & Li, X.D. 2011. Antioxidant responses, hepatic intermediary metabolism, histology and ultrastructure in Synechogobius hasta exposed to waterborne cadmium. Ecotoxicology and Environmental Safety 74(5): 1156-1163.

Macedo, A.K.S., Dos-Santos, K.P.E., Brighenti, L.S., Windmoller, C.C., Barbosa, F.A.R., DeAzambuja Ribeiro, R.I.M. & Thome, R.G. 2020. Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lutken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana, MG, Brazil. Science of the Total Environment 735: 139505.

Mahrous, K.F., Hassan, A.M., Radwan, H.A. & Mahmoud, M.A. 2015. Inhibition of cadmium-induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay. Ecotoxicology and Environmental Safety 119: 140-147.

Mani, R., Meena, B., Valivittan, K. & Suresh, A. 2014. Glutathione-S-transferase and catalase activity in different tissues of marine catfish (Arius arius) on exposure to cadmium. International Journal of Pharmacy and Pharmaceutical Sciences 6(1): 326-332.

Mattioli, C.C., Chiste, B.M., Takeshita, N.A., Jonsson, C.M., Ferracini, V.L. & Hisano, H. 2020. Acute toxicity and risk assessment of florfenicol for nile tilapia larvae. Bulletin of Environmental Contamination and Toxicology 105(5): 721-727.

Mcrae, N.K., Gaw, S. & Glover, C.N. 2018. Effects of waterborne cadmium on metabolic rate, oxidative stress, and ion regulation in the freshwater fish, inanga (Galaxias maculatus). Aquatic Toxicology 194: 1-9.

Minhas, R., Abdullah, S., Naz, H., Abbas, K., Ahmed, T. & Zahid, N. 2022. Evaluation of genotoxicity induced by cobalt to freshwater fish, Cirrhina mrigalausing micronuclei assay. Journal of Zoo Biology 04(01): 19-25.

Modu, B.M., Saiful, M., Kartini, M., Kasim, Z., Hassan, M. & Shaharom-Harrison, F.M. 2012. Effect of water quality and monogenean parasites in the gills of freshwater catfish, Hemibagrus nemurus Valenciennes 1840. Current Research Journal of Biological Sciences 4(3): 242-246.

Naik, A.P., Shyama, S.K. & D-Costa, A.H. 2020. Evaluation of genotoxicity, enzymatic alterations and cadmium accumulation in Mozambique tilapia Oreochromis mossambicus exposed to sub-lethal concentrations of cadmium chloride. Environmental Chemistry and Ecotoxicology 2: 126-131.

Naz, H., Abdullah, S., Naz, S., Abbas, S., Hassan, W., Perveen, S., Batool, M. & Shafique, L. 2018. Comparative assessment of the acute toxicity, behavior and catalase activity in Cirrhina mrigalaexposed to Fe+Ni+Pb+Zn mixture. Punjab University Journal of Zoology 33(1): 91-97.

Ossana, N.A., Eissa, B.L. & Salibian, A. 2009. Cadmium bioconcentration and genotoxicity in the common carp (Cyprinus carpio). International Journal of Environment and Health 3(3): 302-309.

OtludiL, B., Akin, H.K. & Erhan, U.N.L.U. 2017. Effects of sub-lethal exposure of cadmium on histopathology of gills of Nile tilapia, Oreochromis niloticus and the mitigating effects of Cladophora glomerataActa Biologica Turcia 30(1): 24-30.

Ozkan, F., Gunduz, S.G., Berkoz, M. & Hunt, A.O. 2011. Induction of micronuclei and other nuclear abnormalities in peripheral erythrocytes of Nile tilapia, Oreochromis niloticus, following exposure to sublethal cadmium doses. Turkish Journal of Zoology 35(4): 585-592.

Padrilah, S.N., Sabullah, M.K., Shukor, M.Y.A., Yasid, N.A., Shamaan, N.A. & Ahmad, S.A. 2018. Toxicity effects of fish histopathology on copper accumulation. Pertanika Journal of Tropical Agricultural Science41(2): 519-540.

Pandey, S., Parvez, S., Ansari, R.A., Ali, M., Kaur, M., Hayat, F. & Raisuddin, S. 2008. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions 174(3): 183-192.

Parveen, N. & Shadab, G.G.H.A. 2012. Cytogenetic evaluation of cadmium chloride on Channa punctatusJournal of Environmental Biology 33(3): 663.

Patnaik, B.B., Howrelia, H., Mathews, T. & Selvanayagam, M. 2011. Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. African Journal of Biotechnology 10(57): 12218-12223.

Pereira, L.S., Ribas, J.L.C., Vicari, T., Silva, S.B., Stival, J., Baldan, A.P. & de Assis, H.S. 2016. Effects of ecologically relevant concentrations of cadmium in a freshwater fish. Ecotoxicology and Environmental Safety 130: 29-36.

Poleksic, V. & Mitrovic-Tutundzic, V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. In Sublethal and Chronic Effects of Pollutants on Freshwater Fish, edited by Muller, R. & Lloyd, R. Oxford: FishingNews Books. pp. 339-352.

Prabhahar, C., Saleshrani, K., Tharmaraj, K. & Vellaiyan, M. 2012. Effect of cadmium compound on the histological changes of various vital organs of the fresh water fish Cirrhinus mrigalaInternational Journal of Pharmaceutical and Biological Archives 3(1): 84-88.

Praveena, M., Sandeep, V., Kavitha, N. & Jayantha, R.K. 2013. Impact of tannery effluent, chromium on hematological parameters in a fresh water fish, Labeo Rohita (Hamilton). Research Journal of Animal, Veterinary and Fishery Sciences 1(6): 1-5.

Puspitasari, R., Purbonegoro, T. & Putri, D.I. 2018. Short time effect of cadmium and copper on java medaka (Oryzias javanicus) as bioindicator for ecotoxicological studies. In AIP Conference Proceedings 2026(1): 020015.

Qualhato, G., Rocha, E.C., De Oliveira Lima, T.L., Silva, D.M.E., Cardoso, J.R., Koppe Grisolia, C. & de Sabóia-Morais, S.M.T. 2017. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata Chemosphere 183: 305-314.

Rehman, T., Naz, S., Hussain, R., Chatha, A.M.M., Ahmad, F., Yamin, A., Akram, R., Naz, H. & Shaheen, A. 2020. Exposure to heavy metals causes histopathological changes and alters antioxidant enzymes in fresh water fish (Oreochromis niloticus). Asian Journal of Agriculture and Biology 1: 1-11.

Rennika, A. & Nurlita A. 2013. Concentration and length of exposure of organic and inorganic compounds on the mujair fish gill network (Oreochromis mossambicus) in sub lethal condition. Jurnal Sains dan Seni Pomits 2(2): 2337-3520.

Robert, R.J. 2001. Fish Pathology. 3rd ed. London: W.B. Saunders.

Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. & Girard, J.P. 2000. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology 48(2-3): 185-194.

Saleh, K.A. & Alshehri, M.A. 2011. The intensity of pollutant genotoxicity in Lake Uluabat: Investigation of the peripheral erythrocytes of Cyprinus carpioAfrican Journal of Biotechnology 10(71): 16045-16050.

Samuel, P.O. 2021. Assessment of the toxic effects of cadmium on Clarias gariepinus (Burchell, 1822). Journal of Research in Environmental Science and Toxicology 10(1): 72-75.

Selvanathan, J., Vincent, S. & Nirmala, A. 2013. Histopathology changes in freshwater fish Clarias batrachus(Linn.) exposed to mercury and cadmium. International Journal of Life Sciences and Pharma Research 3(2): 11-21.

Shah, N., Khan, A., Ali, R., Marimuthu, K., Uddin, M.N., Rizwan, M. & Khisroon, M. 2020. Monitoring bioaccumulation (in gills and muscle tissues), hematology, and genotoxic alteration in Ctenopharyngodon idellaexposed to selected heavy metals. BioMed. Research International 2020: 6185231.

Shah, P., Wolf, K. & Lammerding, J. 2017. Bursting the bubble--Nuclear envelope rupture as a path to genomic instability? Trends in Cell Biology 27(8): 546-555.

Steel, R.G.D., Torrie, J.H. & Dickey, D.A. 1996. Principles and Procedures of Statistics. 3rd ed. Singapore: McGraw Hill Book Co.

Suvarna, S.K., Floyd, A.D. & Bancroft, J.D. 2012. Bancroft's Theory and Practice of Histological Techniques. 7th ed. New York: Elsevier Health Science.

Ta, T.Y., Le, T.T., Trinh, T.T., Trinh, T.T., Pham, T.M.T. & Pham, T.H.P. 2018. Risk assessment of lead and cadmium on Juveniles of Cyprinus carpio in laboratory scale. Vietnam Journal of Science, Technology and Engineering 60(2): 78-83.

Thangam, Y., Jayaprakash, S. & Perumayee, M. 2014. Effect of copper toxicity on hematological parameters to fresh water fish Cyprinus carpio (common carp). Journal of Environmental Science, Toxicology and Food Technology 8(9): 50-60.

Todorova, K., Velcheva, I., Yancheva, V., Stoyanova, S., Dimitrova, P., Tomov, S. & Georgieva, E. 2019. Interactions of lead with other heavy metals (cadmium, nickel and zinc) in toxic effects on the histological structure of gills of the common carp Cyprinus carpio Linnaeus, 1758. Acta Zool. Bulgar. 71(1): 95-102.

Vajargah, M.F. & Hedayati, A. 2017. Toxicity effects of cadmium in grass carp (Ctenopharyngodon idella) and big head carp (Hypophthalmichthys nobilis). Transylvanian Review of Systematical and Ecological Research 19(1): 43-48.

Valiallahi, J. & Pourabbasali, M. 2019. The effects of cadmium chloride on the hematological and biochemical parameters in giant Sturgeon fish (Huso huso). Environmental Science and Bioengineering 8(1): 83-91.

Van der Oost, R., Beyer, J. & Vermeulen, N.P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology 13(2): 57-149.

Wang, J., Zhang, H., Zhang, T., Zhang, R., Liu, R. & Chen, Y. 2015. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. International Journal of Biological Macromolecules 77: 59-67.

Watjen, W., Haase, H., Biagioli, M. & Beyersmann, D. 2002. Induction of apoptosis in mammalian cells by cadmium and zinc. Environmental Health Perspectives 110(5): 865-867.

Witeska, M. 2013. Erythrocytes in teleost fishes: A review. Zoology and Ecology 23: 275-281.

Witeska, M., Kondera, E. & Szczygielska, K. 2011. The effects of cadmium on common carp erythrocyte morphology. Polish Journal of Environmental 20(3): 783-788.

Woody, C.A., Hughes, R.M., Wagner, E.J., Quinn, T.P., Roulson, L.H., Martin, L.M. & Griswold, K. 2010. The mining law of 1872: Change is overdue. Fisheries 35(7): 321-331.

Yallappa, S. & Asiya Nuzhat, FB. 2018. Toxic effect of carbohydrate metabolism changes on carp (Cyprinus carpio) exposed to cadmium Chloride. International Journal of Fisheries and Aquatic Sciences 6(2): 364-371.

Yalsuyi, A.M., Hedayati, A., Vajargah, M.F. & Mousavi-Sabet, H. 2017. Examining the toxicity of cadmium chloride in common carp (Cyprinus carpio) and goldfish (Carassius auratus). Journal of Environmental Treatment Techniques 5(2): 83-86.

Zhang, X. & Jin, J. 2008. Binding analysis of pazufloxacin mesilate to catalase using spectroscopic methods. Journal of Molecular Structure 882(1-3): 96-100.

 

*Pengarang untuk surat-menyurat; email: tanvirahmeduaf@gmail.com